用python操作ONNX
接下来的章节将重点介绍如何使用onnx提供的Python API构建 ONNX 计算图。
一个简单的例子:线性回归
线性回归是机器学习中最简单的模型,其表达式如下.我们可以将其视为三个变量的函数 分解为y = Add(MatMul(X, A), B
)。这就是我们需要用 ONNX 运算符表示的内容。首先是用ONNX 运算符实现函数。 ONNX 是强类型的。必须为函数的输入和输出定义形状和类型。也就是说,在make 函数中,我们需要四个函数来构建计算图:
make_tensor_value_info
:声明变量(输入或输出)的形状和类型make_node
:创建一个由操作符类型(算子名称)、输入和输出定义的节点make_graph
:利用前两个函数创建的对象创建 ONNX 计算图make_model
:将计算图和额外的元数据进行合并
在创建过程中,我们需要为图中每个节点的输入和输出命名。计算图的输入和输出由 onnx 对象定义,字符串用于指代中间结果。
# imports
from onnx import TensorProto
from onnx.helper import (
make_model, make_node, make_graph,
make_tensor_value_info)
from onnx.checker import check_model
# inputs
# 'X' is the name, TensorProto.FLOAT the type, [None, None] the shape
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None])
B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None])
# outputs, the shape is left undefined
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
# nodes
# It creates a node defined by the operator type MatMul,
# 'X', 'A' are the inputs of the node, 'XA' the output.
node1 = make_node('MatMul', ['X', 'A'], ['XA'])
node2 = make_node('Add', ['XA', 'B'], ['Y'])
# from nodes to graph
# the graph is built from the list of nodes, the list of inputs,
# the list of outputs and a name.
graph = make_graph([node1, node2], # nodes
'lr', # a name
[X, A, B], # inputs
[Y]) # outputs
# onnx graph
# there is no metadata in this case.
onnx_model = make_model(graph)
# Let's check the model is consistent,
# this function is described in section
# Checker and Shape Inference.
check_model(onnx_model)
# the work is done, let's display it...
print(onnx_model)
ir_version: 10
graph {
node {
input: "X"
input: "A"
output: "XA"
op_type: "MatMul"
}
node {
input: "XA"
input: "B"
output: "Y"
op_type: "Add"
}
name: "lr"
input {
name: "X"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
}
input {
name: "A"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
}
input {
name: "B"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
}
output {
name: "Y"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
}
}
}
}
}
opset_import {
version: 21
}
shape定义为[None, None]
表示该对象是一个两维张量,没有任何形状信息。 通过查看图中每个对象的字段,也可以检查 ONNX 计算图。
from onnx import TensorProto
from onnx.helper import (
make_model, make_node, make_graph,
make_tensor_value_info)
from onnx.checker import check_model
def shape2tuple(shape):
return tuple(getattr(d, 'dim_value', 0) for d in shape.dim)
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None])
B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
node1 = make_node('MatMul', ['X', 'A'], ['XA'])
node2 = make_node('Add', ['XA', 'B'], ['Y'])
graph = make_graph([node1, node2], 'lr', [X, A, B], [Y])
onnx_model = make_model(graph)
check_model(onnx_model)
# the list of inputs
print('** inputs **')
print(onnx_model.graph.input)
# in a more nicely format
print('** inputs **')
for obj in onnx_model.graph.input:
print("name=%r dtype=%r shape=%r" % (
obj.name, obj.type.tensor_type.elem_type,
shape2tuple(obj.type.tensor_type.shape)))
# the list of outputs
print('** outputs **')
print(onnx_model.graph.output)
# in a more nicely format
print('** outputs **')
for obj in onnx_model.graph.output:
print("name=%r dtype=%r shape=%r" % (
obj.name, obj.type.tensor_type.elem_type,
shape2tuple(obj.type.tensor_type.shape)))
# the list of nodes
print('** nodes **')
print(onnx_model.graph.node)
# in a more nicely format
print('** nodes **')
for node in onnx_model.graph.node:
print("name=%r type=%r input=%r output=%r" % (
node.name, node.op_type, node.input, node.output))
** inputs **
[name: "X"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
, name: "A"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
, name: "B"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
]
** inputs **
name='X' dtype=1 shape=(0, 0)
name='A' dtype=1 shape=(0, 0)
name='B' dtype=1 shape=(0, 0)
** outputs **
[name: "Y"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
}
}
}
]
** outputs **
name='Y' dtype=1 shape=(0,)
** nodes **
[input: "X"
input: "A"
output: "XA"
op_type: "MatMul"
, input: "XA"
input: "B"
output: "Y"
op_type: "Add"
]
** nodes **
name='' type='MatMul' input=['X', 'A'] output=['XA']
name='' type='Add' input=['XA', 'B'] output=['Y']
张量类型是浮点数(= 1)。函数onnx.helper.tensor_dtype_to_np_dtype()
会给出与 numpy 对应的数据类型。
from onnx import TensorProto
from onnx.helper import tensor_dtype_to_np_dtype, tensor_dtype_to_string
np_dtype = tensor_dtype_to_np_dtype(TensorProto.FLOAT)
print(f"The converted numpy dtype for {tensor_dtype_to_string(TensorProto.FLOAT)} is {np_dtype}.")
The converted numpy dtype for TensorProto.FLOAT is float32.
%r
同样用于格式化字符串,但它表示将一个值转换为它的“原始”字符串表示形式。这意味着,它会保留字符串中的所有特殊字符,包括空格和换行符等,而不会尝试对它们进行任何转换或解释。这对于调试或者需要保留原始格式的字符串非常有用。
例如:
message = "Hello,\nWorld!"
formatted_message = "The message is: %r" % message
print(formatted_message)
输出将会是:
The message is: Hello,\nWorld!
序列化
ONNX 建立在 protobuf 的基础之上。它为描述机器学习模型添加了必要的定义,大多数情况下,ONNX 是用来序列化或反序列化模型的。第二部分将介绍数据的序列化和反序列化,如张量、稀疏张量......
模型序列化
ONNX 基于 protobuf
。它最大限度地减少了在磁盘上保存图形所需的空间。onnx 中的每个对象(参见Protos)都可以通过SerializeToString
方法序列化。
from onnx import TensorProto
from onnx.helper import (
make_model, make_node, make_graph,
make_tensor_value_info)
from onnx.checker import check_model
def shape2tuple(shape):
return tuple(getattr(d, 'dim_value', 0) for d in shape.dim)
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None])
B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
node1 = make_node('MatMul', ['X', 'A'], ['XA'])
node2 = make_node('Add', ['XA', 'B'], ['Y'])
graph = make_graph([node1, node2], 'lr', [X, A, B], [Y])
onnx_model = make_model(graph)
check_model(onnx_model)
# The serialization
with open("linear_regression.onnx", "wb") as f:
f.write(onnx_model.SerializeToString())
# display
print(onnx_model)
ir_version: 10
graph {
node {
input: "X"
input: "A"
output: "XA"
op_type: "MatMul"
}
node {
input: "XA"
input: "B"
output: "Y"
op_type: "Add"
}
name: "lr"
input {
name: "X"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
}
input {
name: "A"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
}
input {
name: "B"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
}
output {
name: "Y"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
}
}
}
}
}
opset_import {
version: 21
}
ONNX计算图可通过函数load
恢复:
from onnx import load
with open("linear_regression.onnx", "rb") as f:
onnx_model = load(f)
# display
print(onnx_model)
ir_version: 10
graph {
node {
input: "X"
input: "A"
output: "XA"
op_type: "MatMul"
}
node {
input: "XA"
input: "B"
output: "Y"
op_type: "Add"
}
name: "lr"
input {
name: "X"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
}
input {
name: "A"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
}
input {
name: "B"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
}
output {
name: "Y"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
}
}
}
}
}
opset_import {
version: 21
}
任何模型都可以用这种方式序列化,除非它们的大小超过 2 Gb。接下来的章节将介绍如何克服模型大小这一限制。
张量序列化
张量的序列化过程通常如下:
import numpy
from onnx.numpy_helper import from_array
numpy_tensor = numpy.array([0, 1, 4, 5, 3], dtype=numpy.float32)
print(type(numpy_tensor))
onnx_tensor = from_array(numpy_tensor)
print(type(onnx_tensor))
serialized_tensor = onnx_tensor.SerializeToString()
print(type(serialized_tensor))
with open("saved_tensor.pb", "wb") as f:
f.write(serialized_tensor)
<class 'numpy.ndarray'>
<class 'onnx.onnx_ml_pb2.TensorProto'>
<class 'bytes'>
还有反序列化:
from onnx import TensorProto
from onnx.numpy_helper import to_array
with open("saved_tensor.pb", "rb") as f:
serialized_tensor = f.read()
print(type(serialized_tensor))
onnx_tensor = TensorProto()
onnx_tensor.ParseFromString(serialized_tensor)
print(type(onnx_tensor))
numpy_tensor = to_array(onnx_tensor)
print(numpy_tensor)
<class 'bytes'>
<class 'onnx.onnx_ml_pb2.TensorProto'>
[0. 1. 4. 5. 3.]
数据类型不限于TensorProto:
import onnx
import pprint
pprint.pprint([p for p in dir(onnx)
if p.endswith('Proto') and p[0] != '_'])
['AttributeProto',
'FunctionProto',
'GraphProto',
'MapProto',
'ModelProto',
'NodeProto',
'OperatorProto',
'OperatorSetIdProto',
'OperatorSetProto',
'OptionalProto',
'SequenceProto',
'SparseTensorProto',
'StringStringEntryProto',
'TensorProto',
'TensorShapeProto',
'TrainingInfoProto',
'TypeProto',
'ValueInfoProto']
使用函数load_tensor_from_string
可以简化这段代码。
from onnx import load_tensor_from_string
with open("saved_tensor.pb", "rb") as f:
serialized = f.read()
proto = load_tensor_from_string(serialized)
print(type(proto))
<class 'onnx.onnx_ml_pb2.TensorProto'>
Initializer,默认值
之前的模型假定线性回归的系数也是模型的输入,这不是很方便。为了遵循 onnx 语义,它们应该作为常量或initializer成为模型本身的一部分。这个示例修改了上一个示例,将输入A
和B
变为initializer。以下两个函数,可以将 numpy 转换为 onnx,也可以反过来转换(参见数组)。
onnx.numpy_helper.to_array
:从 onnx 转换到 numpyonnx.numpy_helper.from_array
: 从 numpy 转换到 onnx
import numpy
from onnx import numpy_helper, TensorProto
from onnx.helper import (
make_model, make_node, make_graph,
make_tensor_value_info)
from onnx.checker import check_model
# initializers
value = numpy.array([0.5, -0.6], dtype=numpy.float32)
A = numpy_helper.from_array(value, name='A')
value = numpy.array([0.4], dtype=numpy.float32)
C = numpy_helper.from_array(value, name='C')
# the part which does not change
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
node1 = make_node('MatMul', ['X', 'A'], ['AX'])
node2 = make_node('Add', ['AX', 'C'], ['Y'])
graph = make_graph([node1, node2], 'lr', [X], [Y], [A, C])
onnx_model = make_model(graph)
check_model(onnx_model)
print(onnx_model)
ir_version: 10
graph {
node {
input: "X"
input: "A"
output: "AX"
op_type: "MatMul"
}
node {
input: "AX"
input: "C"
output: "Y"
op_type: "Add"
}
name: "lr"
initializer {
dims: 2
data_type: 1
name: "A"
raw_data: "\000\000\000?\232\231\031\277"
}
initializer {
dims: 1
data_type: 1
name: "C"
raw_data: "\315\314\314>"
}
input {
name: "X"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
}
output {
name: "Y"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
}
}
}
}
}
opset_import {
version: 21
}
同样,也可以通过 onnx API来查看initializers
。
import numpy
from onnx import numpy_helper, TensorProto
from onnx.helper import (
make_model, make_node, make_graph,
make_tensor_value_info)
from onnx.checker import check_model
# initializers
value = numpy.array([0.5, -0.6], dtype=numpy.float32)
A = numpy_helper.from_array(value, name='A')
value = numpy.array([0.4], dtype=numpy.float32)
C = numpy_helper.from_array(value, name='C')
# the part which does not change
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
node1 = make_node('MatMul', ['X', 'A'], ['AX'])
node2 = make_node('Add', ['AX', 'C'], ['Y'])
graph = make_graph([node1, node2], 'lr', [X], [Y], [A, C])
onnx_model = make_model(graph)
check_model(onnx_model)
print('** initializer **')
for init in onnx_model.graph.initializer:
print(init)
** initializer **
dims: 2
data_type: 1
name: "A"
raw_data: "\000\000\000?\232\231\031\277"
dims: 1
data_type: 1
name: "C"
raw_data: "\315\314\314>"
Attributes
有些算子需要属性,如Transpose
算子。 让我们为表达式y = Add(MatMul(X, Transpose(A))+ B
)创建一个ONNX计算图。Transpose
需要一个定义了坐标轴排列顺序的属性:perm=[1, 0]
。它在函数make_node
中作为命名属性添加进去。
from onnx import TensorProto
from onnx.helper import (
make_model, make_node, make_graph,
make_tensor_value_info)
from onnx.checker import check_model
# unchanged
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None])
B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
# added
node_transpose = make_node('Transpose', ['A'], ['tA'], perm=[1, 0])
# unchanged except A is replaced by tA
node1 = make_node('MatMul', ['X', 'tA'], ['XA'])
node2 = make_node('Add', ['XA', 'B'], ['Y'])
# node_transpose is added to the list
graph = make_graph([node_transpose, node1, node2],
'lr', [X, A, B], [Y])
onnx_model = make_model(graph)
check_model(onnx_model)
# the work is done, let's display it...
print(onnx_model)
ir_version: 10
graph {
node {
input: "A"
output: "tA"
op_type: "Transpose"
attribute {
name: "perm"
ints: 1
ints: 0
type: INTS
}
}
node {
input: "X"
input: "tA"
output: "XA"
op_type: "MatMul"
}
node {
input: "XA"
input: "B"
output: "Y"
op_type: "Add"
}
name: "lr"
input {
name: "X"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
}
input {
name: "A"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
}
input {
name: "B"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
}
output {
name: "Y"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
}
}
}
}
}
opset_import {
version: 21
}
make
函数的整个列表如下,具体使用方法在make 函数中有介绍。
import onnx
import pprint
pprint.pprint([k for k in dir(onnx.helper)
if k.startswith('make')])
['make_attribute',
'make_attribute_ref',
'make_empty_tensor_value_info',
'make_function',
'make_graph',
'make_map',
'make_map_type_proto',
'make_model',
'make_model_gen_version',
'make_node',
'make_operatorsetid',
'make_opsetid',
'make_optional',
'make_optional_type_proto',
'make_sequence',
'make_sequence_type_proto',
'make_sparse_tensor',
'make_sparse_tensor_type_proto',
'make_sparse_tensor_value_info',
'make_tensor',
'make_tensor_sequence_value_info',
'make_tensor_type_proto',
'make_tensor_value_info',
'make_training_info',
'make_value_info']
Opset 和元数据
让我们加载之前创建好的 ONNX
文件,看看它有哪些元数据。
from onnx import load
with open("linear_regression.onnx", "rb") as f:
onnx_model = load(f)
for field in ['doc_string', 'domain', 'functions',
'ir_version', 'metadata_props', 'model_version',
'opset_import', 'producer_name', 'producer_version',
'training_info']:
print(field, getattr(onnx_model, field))
doc_string
domain
functions []
ir_version 10
metadata_props []
model_version 0
opset_import [version: 21]
producer_name
producer_version
training_info []
其中大部分是空的,因为在创建 ONNX
计算图时没有填充,其中只有两个有数值的变量:
from onnx import load
with open("linear_regression.onnx", "rb") as f:
onnx_model = load(f)
print("ir_version:", onnx_model.ir_version)
for opset in onnx_model.opset_import:
print("opset domain=%r version=%r" % (opset.domain, opset.version))
ir_version: 10
opset domain='' version=21
IR
定义了 ONNX
语言的版本。 Opset
定义了所用算子的版本。 ONNX
默认使用最新的版本。 也可以使用另一个版本。
from onnx import load
with open("linear_regression.onnx", "rb") as f:
onnx_model = load(f)
del onnx_model.opset_import[:]
opset = onnx_model.opset_import.add()
opset.domain = ''
opset.version = 14
for opset in onnx_model.opset_import:
print("opset domain=%r version=%r" % (opset.domain, opset.version))
opset domain='' version=14
算子Reshape
的第 5 版将形状定义为输入,但是在第 1 版中却将属性定义为输入。opset
定义了在描述计算图时所遵循的规范。
元数据可用于存储任何信息,如有关模型生成方式的信息、也可以用版本号区分不同的模型等。
from onnx import load, helper
with open("linear_regression.onnx", "rb") as f:
onnx_model = load(f)
onnx_model.model_version = 15
onnx_model.producer_name = "something"
onnx_model.producer_version = "some other thing"
onnx_model.doc_string = "documentation about this model"
prop = onnx_model.metadata_props
data = dict(key1="value1", key2="value2")
helper.set_model_props(onnx_model, data)
print(onnx_model)
ir_version: 10
producer_name: "something"
producer_version: "some other thing"
model_version: 15
doc_string: "documentation about this model"
graph {
node {
input: "X"
input: "A"
output: "XA"
op_type: "MatMul"
}
node {
input: "XA"
input: "B"
output: "Y"
op_type: "Add"
}
name: "lr"
input {
name: "X"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
}
input {
name: "A"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
}
input {
name: "B"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
}
output {
name: "Y"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
}
}
}
}
}
opset_import {
version: 21
}
metadata_props {
key: "key1"
value: "value1"
}
metadata_props {
key: "key2"
value: "value2"
}
字段training_info
可用于存储其他计算图。 参见training_tool_test.py,了解其工作原理。
Functions
函数可以用来缩短构建模型的代码,并为runtime
更快地运行预测提供更多可能性。如果没有使用函数,runtime
只能使用基于现有的算子进行默认地实现。
无属性(attribute)的函数
这是一种简单的情况,函数的每个输入都是执行时已知的动态对象。
import numpy
from onnx import numpy_helper, TensorProto
from onnx.helper import (
make_model, make_node, set_model_props, make_tensor,
make_graph, make_tensor_value_info, make_opsetid,
make_function)
from onnx.checker import check_model
new_domain = 'custom'
opset_imports = [make_opsetid("", 14), make_opsetid(new_domain, 1)]
# Let's define a function for a linear regression
node1 = make_node('MatMul', ['X', 'A'], ['XA'])
node2 = make_node('Add', ['XA', 'B'], ['Y'])
linear_regression = make_function(
new_domain, # domain name
'LinearRegression', # function name
['X', 'A', 'B'], # input names
['Y'], # output names
[node1, node2], # nodes
opset_imports, # opsets
[]) # attribute names
# Let's use it in a graph.
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None])
B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
graph = make_graph(
[make_node('LinearRegression', ['X', 'A', 'B'], ['Y1'], domain=new_domain),
make_node('Abs', ['Y1'], ['Y'])],
'example',
[X, A, B], [Y])
onnx_model = make_model(
graph, opset_imports=opset_imports,
functions=[linear_regression]) # functions to add)
check_model(onnx_model)
# the work is done, let's display it...
print(onnx_model)
ir_version: 10
graph {
node {
input: "X"
input: "A"
input: "B"
output: "Y1"
op_type: "LinearRegression"
domain: "custom"
}
node {
input: "Y1"
output: "Y"
op_type: "Abs"
}
name: "example"
input {
name: "X"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
}
input {
name: "A"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
}
input {
name: "B"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
}
output {
name: "Y"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
}
}
}
}
}
opset_import {
domain: ""
version: 14
}
opset_import {
domain: "custom"
version: 1
}
functions {
name: "LinearRegression"
input: "X"
input: "A"
input: "B"
output: "Y"
node {
input: "X"
input: "A"
output: "XA"
op_type: "MatMul"
}
node {
input: "XA"
input: "B"
output: "Y"
op_type: "Add"
}
opset_import {
domain: ""
version: 14
}
opset_import {
domain: "custom"
version: 1
}
domain: "custom"
}
带有属性(attribute)的函数
下面的函数与前面的函数相同,只是将一个输入变量B
转换成了一个名为bias
的参数。 代码几乎相同,只是 bias 现在是一个常量。 在函数定义中,创建了一个节点Constant
,用于将参数作为结果插入。它通过ref_attr_name
属性与参数相连。
import numpy
from onnx import numpy_helper, TensorProto, AttributeProto
from onnx.helper import (
make_model, make_node, set_model_props, make_tensor,
make_graph, make_tensor_value_info, make_opsetid,
make_function)
from onnx.checker import check_model
new_domain = 'custom'
opset_imports = [make_opsetid("", 14), make_opsetid(new_domain, 1)]
# Let's define a function for a linear regression
# The first step consists in creating a constant
# equal to the input parameter of the function.
cst = make_node('Constant', [], ['B'])
att = AttributeProto()
att.name = "value"
# This line indicates the value comes from the argument
# named 'bias' the function is given.
att.ref_attr_name = "bias"
att.type = AttributeProto.TENSOR
cst.attribute.append(att)
node1 = make_node('MatMul', ['X', 'A'], ['XA'])
node2 = make_node('Add', ['XA', 'B'], ['Y'])
linear_regression = make_function(
new_domain, # domain name
'LinearRegression', # function name
['X', 'A'], # input names
['Y'], # output names
[cst, node1, node2], # nodes
opset_imports, # opsets
["bias"]) # attribute names
# Let's use it in a graph.
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None])
B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
graph = make_graph(
[make_node('LinearRegression', ['X', 'A'], ['Y1'], domain=new_domain,
# bias is now an argument of the function and is defined as a tensor
bias=make_tensor('former_B', TensorProto.FLOAT, [1], [0.67])),
make_node('Abs', ['Y1'], ['Y'])],
'example',
[X, A], [Y])
onnx_model = make_model(
graph, opset_imports=opset_imports,
functions=[linear_regression]) # functions to add)
check_model(onnx_model)
# the work is done, let's display it...
print(onnx_model)
ir_version: 10
graph {
node {
input: "X"
input: "A"
output: "Y1"
op_type: "LinearRegression"
attribute {
name: "bias"
t {
dims: 1
data_type: 1
float_data: 0.6700000166893005
name: "former_B"
}
type: TENSOR
}
domain: "custom"
}
node {
input: "Y1"
output: "Y"
op_type: "Abs"
}
name: "example"
input {
name: "X"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
}
input {
name: "A"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
dim {
}
}
}
}
}
output {
name: "Y"
type {
tensor_type {
elem_type: 1
shape {
dim {
}
}
}
}
}
}
opset_import {
domain: ""
version: 14
}
opset_import {
domain: "custom"
version: 1
}
functions {
name: "LinearRegression"
input: "X"
input: "A"
output: "Y"
attribute: "bias"
node {
output: "B"
op_type: "Constant"
attribute {
name: "value"
type: TENSOR
ref_attr_name: "bias"
}
}
node {
input: "X"
input: "A"
output: "XA"
op_type: "MatMul"
}
node {
input: "XA"
input: "B"
output: "Y"
op_type: "Add"
}
opset_import {
domain: ""
version: 14
}
opset_import {
domain: "custom"
version: 1
}
domain: "custom"
}
解析(Parsing)
onnx 模块提供了一种定义计算图更快的方法,而且更易于阅读。如果计算图是在单个函数中构建的,那么使用起来就很容易。
import onnx.parser
from onnx.checker import check_model
input = '''
<
ir_version: 8,
opset_import: [ "" : 15]
>
agraph (float[I,J] X, float[I] A, float[I] B) => (float[I] Y) {
XA = MatMul(X, A)
Y = Add(XA, B)
}
'''
onnx_model = onnx.parser.parse_model(input)
check_model(onnx_model)
print(onnx_model)
ir_version: 8
graph {
node {
input: "X"
input: "A"
output: "XA"
op_type: "MatMul"
domain: ""
}
node {
input: "XA"
input: "B"
output: "Y"
op_type: "Add"
domain: ""
}
name: "agraph"
input {
name: "X"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_param: "I"
}
dim {
dim_param: "J"
}
}
}
}
}
input {
name: "A"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_param: "I"
}
}
}
}
}
input {
name: "B"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_param: "I"
}
}
}
}
}
output {
name: "Y"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_param: "I"
}
}
}
}
}
}
opset_import {
domain: ""
version: 15
}
这种方法常用于创建小型模型。
检查器和形状推理(Checker and Shape Inference)
onnx 提供了一个检查模型是否有效的函数。 该函数会检查输入变量的类型和维度是否一致。 下面的示例添加了两个不同类型的矩阵,这是不允许的。
import onnx.parser
import onnx.checker
input = '''
<
ir_version: 8,
opset_import: [ "" : 15]
>
agraph (float[I,4] X, float[4,2] A, int[4] B) => (float[I] Y) {
XA = MatMul(X, A)
Y = Add(XA, B)
}
'''
try:
onnx_model = onnx.parser.parse_model(input)
onnx.checker.check_model(onnx_model)
except Exception as e:
print(e)
b'[ParseError at position (line: 6 column: 44)]\nError context: agraph (float[I,4] X, float[4,2] A, int[4] B) => (float[I] Y) {\nExpected character ) not found.'
check_model
会由于这种类型不一致而引发错误。 但是对于没有指定域的自定义算子来说,check_model
不会检查数据的类型和形状。
形状推理的目的只有一个:估计中间结果的形状和类型。 运行时就可以事先估计内存消耗,优化计算。它可以融合某些运算符,可以就地进行计算。
import onnx.parser
from onnx import helper, shape_inference
input = '''
<
ir_version: 8,
opset_import: [ "" : 15]
>
agraph (float[I,4] X, float[4,2] A, float[4] B) => (float[I] Y) {
XA = MatMul(X, A)
Y = Add(XA, B)
}
'''
onnx_model = onnx.parser.parse_model(input)
inferred_model = shape_inference.infer_shapes(onnx_model)
print(inferred_model)
ir_version: 8
graph {
node {
input: "X"
input: "A"
output: "XA"
op_type: "MatMul"
domain: ""
}
node {
input: "XA"
input: "B"
output: "Y"
op_type: "Add"
domain: ""
}
name: "agraph"
input {
name: "X"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_param: "I"
}
dim {
dim_value: 4
}
}
}
}
}
input {
name: "A"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 4
}
dim {
dim_value: 2
}
}
}
}
}
input {
name: "B"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 4
}
}
}
}
}
output {
name: "Y"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_param: "I"
}
}
}
}
}
value_info {
name: "XA"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_param: "I"
}
dim {
dim_value: 2
}
}
}
}
}
}
opset_import {
domain: ""
version: 15
}
有一个新属性value_info
,用于存储推断出的形状。dim_param
中的字母I
: "I"
可以看作一个变量。这取决于输入,但函数能够判断出哪些中间结果将共享相同的维度。 形状推理并非对所有算子都有效,例如,reshape
算子。形状推理只有在形状恒定的情况下才会起作用。 如果形状不恒定,则无法推理出形状。
Evaluation and Runtime
ONNX
标准允许框架以 ONNX
格式导出模型,并允许使用任何支持ONNX
格式的后端进行推理。它可用于多种平台,并针对快速推理进行了优化。ONNX
实现了一个 Python runtime
,有助于理解模型。 它不用于实际生产中,性能也不是它的目标。
评估线性回归模型
完整的 API 描述请参见onnx.reference。 它接收一个模型(一个ModelProto
、一个文件名......)。 方法run
返回字典中指定的一组输入的输出。
import numpy
from onnx import numpy_helper, TensorProto
from onnx.helper import (
make_model, make_node, set_model_props, make_tensor,
make_graph, make_tensor_value_info)
from onnx.checker import check_model
from onnx.reference import ReferenceEvaluator
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None])
B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
node1 = make_node('MatMul', ['X', 'A'], ['XA'])
node2 = make_node('Add', ['XA', 'B'], ['Y'])
graph = make_graph([node1, node2], 'lr', [X, A, B], [Y])
onnx_model = make_model(graph)
check_model(onnx_model)
sess = ReferenceEvaluator(onnx_model)
x = numpy.random.randn(4, 2).astype(numpy.float32)
a = numpy.random.randn(2, 1).astype(numpy.float32)
b = numpy.random.randn(1, 1).astype(numpy.float32)
feeds = {'X': x, 'A': a, 'B': b}
print(sess.run(None, feeds))
[array([[-1.5184462 ],
[-1.0666499 ],
[-0.77610564],
[-2.116381 ]], dtype=float32)]
评估节点
评估器还可以评估一个简单的节点,以检查算子在特定输入时的表现。
import numpy
from onnx import numpy_helper, TensorProto
from onnx.helper import make_node
from onnx.reference import ReferenceEvaluator
node = make_node('EyeLike', ['X'], ['Y'])
sess = ReferenceEvaluator(node)
x = numpy.random.randn(4, 2).astype(numpy.float32)
feeds = {'X': x}
print(sess.run(None, feeds))
[array([[1., 0.],
[0., 1.],
[0., 0.],
[0., 0.]], dtype=float32)]
类似的代码也适用于GraphProto
或FunctionProto
。
Evaluation Step by Step
参数verbose
会显示中间结果信息。
verbose
会显示中间结果信息。import numpy
from onnx import numpy_helper, TensorProto
from onnx.helper import (
make_model, make_node, set_model_props, make_tensor,
make_graph, make_tensor_value_info)
from onnx.checker import check_model
from onnx.reference import ReferenceEvaluator
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None])
B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
node1 = make_node('MatMul', ['X', 'A'], ['XA'])
node2 = make_node('Add', ['XA', 'B'], ['Y'])
graph = make_graph([node1, node2], 'lr', [X, A, B], [Y])
onnx_model = make_model(graph)
check_model(onnx_model)
for verbose in [1, 2, 3, 4]:
print()
print(f"------ verbose={verbose}")
print()
sess = ReferenceEvaluator(onnx_model, verbose=verbose)
x = numpy.random.randn(4, 2).astype(numpy.float32)
a = numpy.random.randn(2, 1).astype(numpy.float32)
b = numpy.random.randn(1, 1).astype(numpy.float32)
feeds = {'X': x, 'A': a, 'B': b}
print(sess.run(None, feeds))
------ verbose=1
[array([[-1.5585198 ],
[ 0.8431341 ],
[-3.8161776 ],
[-0.97695297]], dtype=float32)]
------ verbose=2
MatMul(X, A) -> XA
Add(XA, B) -> Y
[array([[2.7036648],
[2.1685638],
[1.3111192],
[2.7933102]], dtype=float32)]
------ verbose=3
+I X: float32:(4, 2) in [-0.8107846975326538, 0.8805762529373169]
+I A: float32:(2, 1) in [0.04560143128037453, 1.3560810089111328]
+I B: float32:(1, 1) in [-0.5273541212081909, -0.5273541212081909]
MatMul(X, A) -> XA
+ XA: float32:(4, 1) in [-1.0593341588974, 0.13150419294834137]
Add(XA, B) -> Y
+ Y: float32:(4, 1) in [-1.5866882801055908, -0.39584994316101074]
[array([[-1.5866883 ],
[-1.1906545 ],
[-0.9883075 ],
[-0.39584994]], dtype=float32)]
------ verbose=4
+I X: float32:(4, 2):-0.5727394223213196,0.025708714500069618,0.4316417872905731,0.6972395181655884,-0.39831840991973877...
+I A: float32:(2, 1):[0.8323841691017151, 0.20654942095279694]
+I B: float32:(1, 1):[-0.4035758674144745]
MatMul(X, A) -> XA
+ XA: float32:(4, 1):[-0.47142910957336426, 0.5033062100410461, -0.1982671618461609, 0.4859170913696289]
Add(XA, B) -> Y
+ Y: float32:(4, 1):[-0.8750050067901611, 0.09973034262657166, -0.601842999458313, 0.08234122395515442]
[array([[-0.875005 ],
[ 0.09973034],
[-0.601843 ],
[ 0.08234122]], dtype=float32)]
评估自定义的节点
下面的示例仍然实现了线性回归,但在矩阵A
中加入了单位矩阵
import numpy
from onnx import numpy_helper, TensorProto
from onnx.helper import (
make_model, make_node, set_model_props, make_tensor,
make_graph, make_tensor_value_info)
from onnx.checker import check_model
from onnx.reference import ReferenceEvaluator
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None])
B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
node0 = make_node('EyeLike', ['A'], ['Eye'])
node1 = make_node('Add', ['A', 'Eye'], ['A1'])
node2 = make_node('MatMul', ['X', 'A1'], ['XA1'])
node3 = make_node('Add', ['XA1', 'B'], ['Y'])
graph = make_graph([node0, node1, node2, node3], 'lr', [X, A, B], [Y])
onnx_model = make_model(graph)
check_model(onnx_model)
with open("linear_regression.onnx", "wb") as f:
f.write(onnx_model.SerializeToString())
sess = ReferenceEvaluator(onnx_model, verbose=2)
x = numpy.random.randn(4, 2).astype(numpy.float32)
a = numpy.random.randn(2, 2).astype(numpy.float32) / 10
b = numpy.random.randn(1, 2).astype(numpy.float32)
feeds = {'X': x, 'A': a, 'B': b}
print(sess.run(None, feeds))
EyeLike(A) -> Eye
Add(A, Eye) -> A1
MatMul(X, A1) -> XA1
Add(XA1, B) -> Y
[array([[ 3.249391 , -1.8001835 ],
[ 1.4209515 , 1.7799548 ],
[-0.37126446, -0.15336311],
[ 2.164718 , 0.11840849]], dtype=float32)]
如果将运算符EyeLike
和Add
合并为AddEyeLike
,效率会更高。下一个示例将这两个运算符替换为"optimized"
域中的一个运算符。
import numpy
from onnx import numpy_helper, TensorProto
from onnx.helper import (
make_model, make_node, set_model_props, make_tensor,
make_graph, make_tensor_value_info, make_opsetid)
from onnx.checker import check_model
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None])
B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
node01 = make_node('AddEyeLike', ['A'], ['A1'], domain='optimized')
node2 = make_node('MatMul', ['X', 'A1'], ['XA1'])
node3 = make_node('Add', ['XA1', 'B'], ['Y'])
graph = make_graph([node01, node2, node3], 'lr', [X, A, B], [Y])
onnx_model = make_model(graph, opset_imports=[
make_opsetid('', 18), make_opsetid('optimized', 1)
])
check_model(onnx_model)
with open("linear_regression_improved.onnx", "wb") as f:
f.write(onnx_model.SerializeToString())
我们需要评估这个模型是否等同于第一个模型,这就需要对AddEyeLike
这个特定节点进行实现。
import numpy
from onnx.reference import ReferenceEvaluator
from onnx.reference.op_run import OpRun
class AddEyeLike(OpRun):
op_domain = "optimized"
def _run(self, X, alpha=1.):
assert len(X.shape) == 2
assert X.shape[0] == X.shape[1]
X = X.copy()
ind = numpy.diag_indices(X.shape[0])
X[ind] += alpha
return (X,)
sess = ReferenceEvaluator("linear_regression_improved.onnx", verbose=2, new_ops=[AddEyeLike])
x = numpy.random.randn(4, 2).astype(numpy.float32)
a = numpy.random.randn(2, 2).astype(numpy.float32) / 10
b = numpy.random.randn(1, 2).astype(numpy.float32)
feeds = {'X': x, 'A': a, 'B': b}
print(sess.run(None, feeds))
# Let's check with the previous model.
sess0 = ReferenceEvaluator("linear_regression.onnx",)
sess1 = ReferenceEvaluator("linear_regression_improved.onnx", new_ops=[AddEyeLike])
y0 = sess0.run(None, feeds)[0]
y1 = sess1.run(None, feeds)[0]
print(y0)
print(y1)
print(f"difference: {numpy.abs(y0 - y1).max()}")
AddEyeLike(A) -> A1
MatMul(X, A1) -> XA1
Add(XA1, B) -> Y
[array([[-0.37408 , -0.56797665],
[-0.72363484, 1.0973046 ],
[-1.616734 , -2.5929499 ],
[-1.7821894 , -0.81231964]], dtype=float32)]
[[-0.37408 -0.56797665]
[-0.72363484 1.0973046 ]
[-1.616734 -2.5929499 ]
[-1.7821894 -0.81231964]]
[[-0.37408 -0.56797665]
[-0.72363484 1.0973046 ]
[-1.616734 -2.5929499 ]
[-1.7821894 -0.81231964]]
difference: 0.0
预测结果是一样的。让我们在一个足够大的矩阵上比较一下性能,看看是否有显著差异。
import timeit
import numpy
from onnx.reference import ReferenceEvaluator
from onnx.reference.op_run import OpRun
class AddEyeLike(OpRun):
op_domain = "optimized"
def _run(self, X, alpha=1.):
assert len(X.shape) == 2
assert X.shape[0] == X.shape[1]
X = X.copy()
ind = numpy.diag_indices(X.shape[0])
X[ind] += alpha
return (X,)
sess = ReferenceEvaluator("linear_regression_improved.onnx", verbose=2, new_ops=[AddEyeLike])
x = numpy.random.randn(4, 100).astype(numpy.float32)
a = numpy.random.randn(100, 100).astype(numpy.float32) / 10
b = numpy.random.randn(1, 100).astype(numpy.float32)
feeds = {'X': x, 'A': a, 'B': b}
sess0 = ReferenceEvaluator("linear_regression.onnx")
sess1 = ReferenceEvaluator("linear_regression_improved.onnx", new_ops=[AddEyeLike])
y0 = sess0.run(None, feeds)[0]
y1 = sess1.run(None, feeds)[0]
print(f"difference: {numpy.abs(y0 - y1).max()}")
print(f"time with EyeLike+Add: {timeit.timeit(lambda: sess0.run(None, feeds), number=1000)}")
print(f"time with AddEyeLike: {timeit.timeit(lambda: sess1.run(None, feeds), number=1000)}")
difference: 0.0
time with EyeLike+Add: 0.07655519099995445
time with AddEyeLike: 0.06604622999998355
在这种情况下,似乎值得添加一个优化节点。 这种优化通常被称为融合。 两个连续的算子被融合,成为一个经过优化后的算子。
Implementation details
Attributes and inputs
两者之间有明显的区别。输入是动态的,每次执行都可能发生变化。属性永远不会改变,优化器据此可以改进计算图。 因此,不可以将输入转化为属性。 而Constant
是唯一能将属性转化为输入的算子。
Shape or no shape
在处理具有可变维度的深度学习模型时,如何在ONNX格式中有效地表示和处理这些模型,以便它们可以在不同的深度学习框架中使用?
import numpy
from onnx import numpy_helper, TensorProto, FunctionProto
from onnx.helper import (
make_model, make_node, set_model_props, make_tensor,
make_graph, make_tensor_value_info, make_opsetid,
make_function)
from onnx.checker import check_model
from onnxruntime import InferenceSession
def create_model(shapes):
new_domain = 'custom'
opset_imports = [make_opsetid("", 14), make_opsetid(new_domain, 1)]
node1 = make_node('MatMul', ['X', 'A'], ['XA'])
node2 = make_node('Add', ['XA', 'A'], ['Y'])
X = make_tensor_value_info('X', TensorProto.FLOAT, shapes['X'])
A = make_tensor_value_info('A', TensorProto.FLOAT, shapes['A'])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, shapes['Y'])
graph = make_graph([node1, node2], 'example', [X, A], [Y])
onnx_model = make_model(graph, opset_imports=opset_imports)
# Let models runnable by onnxruntime with a released ir_version
onnx_model.ir_version = 8
return onnx_model
print("----------- case 1: 2D x 2D -> 2D")
onnx_model = create_model({'X': [None, None], 'A': [None, None], 'Y': [None, None]})
check_model(onnx_model)
sess = InferenceSession(onnx_model.SerializeToString(),
providers=["CPUExecutionProvider"])
res = sess.run(None, {
'X': numpy.random.randn(2, 2).astype(numpy.float32),
'A': numpy.random.randn(2, 2).astype(numpy.float32)})
print(res)
print("----------- case 2: 2D x 1D -> 1D")
onnx_model = create_model({'X': [None, None], 'A': [None], 'Y': [None]})
check_model(onnx_model)
sess = InferenceSession(onnx_model.SerializeToString(),
providers=["CPUExecutionProvider"])
res = sess.run(None, {
'X': numpy.random.randn(2, 2).astype(numpy.float32),
'A': numpy.random.randn(2).astype(numpy.float32)})
print(res)
print("----------- case 3: 2D x 0D -> 0D")
onnx_model = create_model({'X': [None, None], 'A': [], 'Y': []})
check_model(onnx_model)
try:
InferenceSession(onnx_model.SerializeToString(),
providers=["CPUExecutionProvider"])
except Exception as e:
print(e)
print("----------- case 4: 2D x None -> None")
onnx_model = create_model({'X': [None, None], 'A': None, 'Y': None})
try:
check_model(onnx_model)
except Exception as e:
print(type(e), e)
sess = InferenceSession(onnx_model.SerializeToString(),
providers=["CPUExecutionProvider"])
res = sess.run(None, {
'X': numpy.random.randn(2, 2).astype(numpy.float32),
'A': numpy.random.randn(2).astype(numpy.float32)})
print(res)
print("----------- end")
----------- case 1: 2D x 2D -> 2D
[array([[ 0.45804122, 0.4898213 ],
[ 0.0373224 , -0.00160027]], dtype=float32)]
----------- case 2: 2D x 1D -> 1D
[array([-0.3142326 , -0.05584523], dtype=float32)]
----------- case 3: 2D x 0D -> 0D
[ONNXRuntimeError] : 1 : FAIL : Node () Op (MatMul) [ShapeInferenceError] Input tensors of wrong rank (0).
----------- case 4: 2D x None -> None
<class 'onnx.onnx_cpp2py_export.checker.ValidationError'> Field 'shape' of 'type' is required but missing.
[array([3.5581195, 1.8482882], dtype=float32)]
----------- end
Last updated