ONNX 后端是一个可以运行 ONNX 模型的库。由于许多深度学习框架已经存在,您不需要从头开始创建一切。您可以创建一个转换器,将 ONNX 模型转换为相应框架的特定表示形式,然后委托框架执行。例如,onnx-caffe2(作为 caffe2 的一部分)、onnx-coreml 和 onnx-tensorflow 都是作为转换器实现的。
请注意,尽管 ONNX 统一后端接口是用 Python 定义的,但后端并不需要用 Python 实现。例如,可以用 C++ 创建后端,并使用 pybind11 或 cython 等工具来实现接口。
---------- onnx coverage: ----------
Operators (passed/loaded/total): 21/21/70
------------------------------------
╒════════════════════╤════════════════════╕
│ Operator │ Attributes │
│ │ (name: #values) │
╞════════════════════╪════════════════════╡
│ Slice │ axes: 2 │
│ │ ends: 3 │
│ │ starts: 3 │
├────────────────────┼────────────────────┤
│ Constant │ value: 1 │
├────────────────────┼────────────────────┤
│ Concat │ axis: 0 │
├────────────────────┼────────────────────┤
│ Conv │ group: 6 │
│ │ kernel_shape: 5 │
│ │ pads: 4 │
│ │ strides: 3 │
│ │ auto_pad: 0 │
│ │ dilations: 0 │
├────────────────────┼────────────────────┤
│ Reshape │ shape: 9 │
├────────────────────┼────────────────────┤
│ BatchNormalization │ consumed_inputs: 1 │
│ │ epsilon: 2 │
│ │ is_test: 1 │
│ │ momentum: 0 │
│ │ spatial: 0 │
├────────────────────┼────────────────────┤
│ Dropout │ is_test: 1 │
│ │ ratio: 2 │
├────────────────────┼────────────────────┤
│ MaxPool │ kernel_shape: 2 │
│ │ pads: 3 │
│ │ strides: 2 │
│ │ auto_pad: 0 │
│ │ dilations: 0 │
├────────────────────┼────────────────────┤
│ Transpose │ perm: 1 │
├────────────────────┼────────────────────┤
│ MatMul │ No attributes │
├────────────────────┼────────────────────┤
│ Relu │ No attributes │
├────────────────────┼────────────────────┤
│ LRN │ alpha: 2 │
│ │ beta: 1 │
│ │ bias: 2 │
│ │ size: 1 │
├────────────────────┼────────────────────┤
│ Add │ axis: 1 │
│ │ broadcast: 1 │
├────────────────────┼────────────────────┤
│ Abs │ No attributes │
├────────────────────┼────────────────────┤
│ Pad │ mode: 3 │
│ │ paddings: 2 │
│ │ value: 1 │
├────────────────────┼────────────────────┤
│ Softmax │ axis: 0 │
├────────────────────┼────────────────────┤
│ GlobalAveragePool │ No attributes │
├────────────────────┼────────────────────┤
│ Mul │ axis: 1 │
│ │ broadcast: 1 │
├────────────────────┼────────────────────┤
│ Sum │ No attributes │
├────────────────────┼────────────────────┤
│ Gemm │ broadcast: 1 │
│ │ transB: 1 │
│ │ alpha: 0 │
│ │ beta: 0 │
│ │ transA: 0 │
├────────────────────┼────────────────────┤
│ AveragePool │ kernel_shape: 3 │
│ │ pads: 3 │
│ │ strides: 2 │
│ │ auto_pad: 0 │
╘════════════════════╧════════════════════╛