线程束和线程束分化|Warp
source from 《Professional CUDA C Programming》By Max Grossman&Ty McKercher.I made some changes according to my own understanding.
Last updated
source from 《Professional CUDA C Programming》By Max Grossman&Ty McKercher.I made some changes according to my own understanding.
Last updated
线程束是SM中基本的执行单元。当一个线程块的网格被启动后,网格中的线程块分 布在SM中。一旦线程块被调度到一个SM上,线程块中的线程会被进一步划分为线程束。 一个线程束由32个连续的线程组成,在一个线程束中,所有的线程按照单指令多线程 (SIMT)方式执行;也就是说,所有线程都执行相同的指令,每个线程在私有数据上进 行操作。
一个线程块的线程束的数量可以根据下式确定:
因此,硬件总是给一个线程块分配一定数量的线程束。线程束不会在不同的线程块之 间分离。如果线程块的大小不是线程束大小的倍数,那么在最后的线程束里有些线程就 不会活跃。
下图一个在x轴中有40个线程、在y轴中有2个线程的二维线程块。从应用 程序的角度来看,在一个二维网格中共有80个线程。 硬件为这个线程块配置了3个线程束,使总共96个硬件线程去支持80个软件线程。注 意,最后半个线程束是不活跃的。即使这些线程未被使用,它们仍然消耗SM的资源,如寄存器。
从逻辑角度来看,线程块是线程的集合,它们可以被组织为一维、二维或三维布局。
从硬件角度来看,线程块是一维线程束的集合。在线程块中线程被组织成一维布局, 每32个连续线程组成一个线程束。
CPU拥有复杂的硬件以执行分支预测,也就是在每个条件检查中预测应用程序的控制 流会使用哪个分支。如果预测正确,CPU中的分支只需付出很小的性能代价。如果预测不 正确,CPU可能会停止运行很多个周期,因为指令流水线被清空了。我们不必完全理解为 什么CPU擅长处理复杂的控制流。这个解释只是作为对比的背景。
GPU是相对简单的设备,它没有复杂的分支预测机制。一个线程束中的所有线程在同 一周期中必须执行相同的指令,如果一个线程执行一条指令,那么线程束中的所有线程都 必须执行该指令。如果在同一线程束中的线程使用不同的路径通过同一个应用程序,这可 能会产生问题。例如,思考下面的语句:
假设在一个线程束中有16个线程执行这段代码,cond为true,但对于其他16个来说 cond为false。一半的线程束需要执行if语句块中的指令,而另一半需要执行else语句块中的 指令。在同一线程束中的线程执行不同的指令,被称为线程束分化。我们已经知道,在一 个线程束中所有线程在每个周期中必须执行相同的指令,所以线程束分化似乎会产生一个 悖论。
如果一个线程束中的线程产生分化,线程束将连续执行每一个分支路径,而禁用不执 行这一路径的线程。线程束分化会导致性能明显地下降。在前面的例子中可以看到,线程 束中并行线程的数量减少了一半:只有16个线程同时活跃地执行,而其他16个被禁用了。条件分支越多,并行性削弱越严重。
注意,线程束分化只发生在同一个线程束中。在不同的线程束中,不同的条件值不会 引起线程束分化。
为了获得最佳的性能,应该避免在同一线程束中有不同的执行路径。例如,假设有两个分支,下面展示了简单的算术内核示例。我们可以用一个偶数和奇 数线程方法来模拟一个简单的数据分区,目的是导致线程束分化。该条件(tid%2==0)使 偶数编号的线程执行if子句,奇数编号的线程执行else子句。
如果使用线程束方法(而不是线程方法)来交叉存取数据,可以避免线程束分化,并 且设备的利用率可达到100%。条件(tid/warpSize)%2==0使分支粒度是线程束大小的倍 数;偶数编号的线程执行if子句,奇数编号的线程执行else子句。这个核函数产生相同的 输出,但是顺序不同。
分支效率被定义为未分化的分支与全部分支之比,可以使用以下公式来计算:
如果我们使用nvprof查看mathKernel1核函数的分支效率,会发现他的分支效率居然是100%。这个奇怪的现象是 CUDA编译器优化导致的结果,它将短的、有条件的代码段的断定指令取代了分支指令 (导致分化的实际控制流指令)。 在分支预测中,根据条件,把每个线程中的一个断定变量设置为1或0。这两种条件流 路径被完全执行,但只有断定为1的指令被执行。断定为0的指令不被执行,但相应的线程 也不会停止。只有在条件语 句的指令数小于某个阈值时,编译器才用断定指令替换分支指令。因此,一段很长的代码 路径肯定会导致线程束分化。
此外,大家也可以做做试验将mathKernel1中的if...else语句修改为多个if语句,可 以使分化分支的数量翻倍。
在每个CUDA核心里指令是顺序执行的。当一个线程束阻塞时,SM切换执行其他符 合条件的线程束。理想情况下,我们想要有足够的线程束占用设备的核心。占用率是每个 SM中活跃的线程束占最大线程束数量的比值。
当一个分化的线程采取不同的代码路径时,会产生线程束分化
不同的if-then-else分支会连续执行
尝试调整分支粒度以适应线程束大小的倍数,避免线程束分化
不同的分化可以执行不同的代码且无须以牺牲性能为代价