这两个参数值可以提前计算出来.
def fuse_conv_and_bn(conv, bn):
#
# init
fusedconv = torch.nn.Conv2d(
conv.in_channels,
conv.out_channels,
kernel_size=conv.kernel_size,
stride=conv.stride,
padding=conv.padding,
bias=True
)
#
# prepare filters
w_conv = conv.weight.clone().view(conv.out_channels, -1)
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps+bn.running_var)))
fusedconv.weight.copy_( torch.mm(w_bn, w_conv).view(fusedconv.weight.size()) )
#
# prepare spatial bias
if conv.bias is not None:
b_conv = conv.bias
else:
b_conv = torch.zeros( conv.weight.size(0) )
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
fusedconv.bias.copy_( torch.matmul(w_bn, b_conv) + b_bn )
#
# we're done
return fusedconv
if __name__ == "__main__":
import torch
import torchvision
torch.set_grad_enabled(False)
x = torch.randn(16, 3, 256, 256)
rn18 = torchvision.models.resnet18(pretrained=True)
rn18.eval()
net = torch.nn.Sequential(
rn18.conv1,
rn18.bn1
)
y1 = net.forward(x)
fusedconv = fuse_conv_and_bn(net[0], net[1])
y2 = fusedconv.forward(x)
d = (y1 - y2).norm().div(y1.norm()).item()
print("error: %.8f" % d)
# error: 0.00000030